赌球术语-赌球加时_免费百家乐计划_全讯网14234 (中国)·官方网站

Analysis of direct piecewise polynomial collocation methods for the Bagley-Torvik equation

發(fā)布者:文明辦發(fā)布時間:2025-07-04瀏覽次數(shù):10


主講人:梁慧 哈爾濱工業(yè)大學(xué)(深圳)教授


時間:2025年7月10日14:00


地點:徐匯校區(qū)三號樓332室


舉辦單位:數(shù)理學(xué)院


主講人介紹:梁慧,哈爾濱工業(yè)大學(xué)(深圳)理學(xué)院副院長、教授、博導(dǎo)。入選首屆“深圳市優(yōu)秀科技創(chuàng)新人才培養(yǎng)項目(杰出青年基礎(chǔ)研究)”,任期刊《Computational & Applied Mathematics》《Communications on Analysis and Computation》和《中國理論數(shù)學(xué)前沿》的編委,中國仿真學(xué)會仿真算法專委會委員、中國仿真學(xué)會不確定性系統(tǒng)分析與仿真專業(yè)委員會秘書、廣東省計算數(shù)學(xué)學(xué)會常務(wù)理事、廣東省工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會理事、深圳市數(shù)學(xué)學(xué)會常務(wù)理事。主要的研究方向為:延遲微分方程、Volterra積分方程的數(shù)值分析。主持國家自然科學(xué)基金、深圳市杰出青年基金、深圳市基礎(chǔ)研究計劃等10余項科研項目,獲中國系統(tǒng)仿真學(xué)會“優(yōu)秀論文”獎、黑龍江省數(shù)學(xué)會優(yōu)秀青年學(xué)術(shù)獎、深圳市海外高層次人才。目前已被SCI收錄文章40余篇,發(fā)表在SIAM J. Numer. Anal.、IMA J. Numer. Anal.、J. Sci. Comput.、BIT、Adv. Comput. Math.等20余種不同的國際雜志上。


內(nèi)容介紹:The piecewise polynomial collocation method does not always work for Caputo fractional differential equations (FDEs), since it is related to the well-known Conjecture 6.3.5 in Brunner’s 2004 monograph on the convergence of the collocation solution for weakly singular Volterra integral equations (VIEs) of the first kind, and this is the reason why in the existing literature, the collocation method is not used directly to solve FDEs, but rather indirectly to solve the reformulated VIEs. The Bagley-Torvik equation is a typical representative of a class of FDEs, whose highest order derivative of the unknown function is an integer, and a Caputo derivative is also involved, and the characteristic with dominant integer order derivative allows us to use collocation methods directly to numerically solve the Bagley-Torvik equation. In this paper, the existence, uniqueness and regularity of the exact solution for the initial value problem of the Bagley-Torvik equation are given by virtue of the theory of VIEs, but the piecewise polynomial collocation method is used directly to solve the Bagley-Torvik equation, and the global convergence is derived on graded meshes and the pointwise error estimate is obtained on uniform meshes. Moreover, the global superconvergence of the collocation solution is also obtained without any postprocessing techniques. Unlike the indirect reformulated numerical methods, one has to resort to the iterated numerical solution to improve the numerical accuracy. Some numerical examples are given to illustrate the theoretical results, and it also shows that our analysis for the Bagley-Torvik equation can be extended to more general integer order derivative dominant FDEs, even for time fractional partial differential equation with this characteristic.

现金百家乐官网赌法| 百家乐机器图片| 挖掘百家乐赢钱秘籍| 玩机器百家乐心得| 大发888备用网站| 百家乐官网太阳城小郭| 八卦24山| 大发888游戏平台46| 娱乐城注册送金| 鸟巢百家乐官网的玩法技巧和规则 | 百家乐官网百家乐官网伴侣| 百家乐技巧娱乐博彩| 大发888注册网址| 缅甸赌场| 玩百家乐官网秘诀| 明珠娱乐开户| 澳门百家乐大小| 威尼斯人娱乐城博彩网站| 百家乐官网概率投注| 永利高百家乐网址| 网上百家乐官网真实吗| 7人百家乐桌布| 百家乐官网建材| 真人游戏机| 百家乐官网游戏程序下载| 玩百家乐请高手指点| 百家乐官网牌桌订做| 云顶会所| 大发888下载安全的| 百家乐百家乐游戏| 百家乐官网暗红色桌布| 百家乐官网国际娱乐| 六合彩天线宝宝| 视频百家乐代理| 百家乐官网博彩安全吗| 威尼斯人娱乐城首选802com| 乐百家乐彩现金开户| 正规百家乐官网平注法口诀| 百家乐官网是真的吗| 包赢百家乐的玩法技巧和规则| 自贡百家乐官网赌场娱乐网规则|